DMCA.com Protection Status

In 3D (Three Dimentional Printing)  quan tâm

Được đăng bởi: Đào Mạnh Thắng

Cập nhật lúc 18:49 ngày 31/12/2017

IN 3D (Three Dimensional Printing)

Máy in 3D đang in hình tháp Eiffel

In 3D còn được gọi là chế tạo đắp dần (Additive Manufacturing) là một chuỗi các công đoạn khác nhau được kết hợp để tạo ra một vật thể ba chiều bằng cách in theo các lớp từ một bản vẽ hay một mô hình 3D có trước. Công nghệ này khác hoàn toàn so với chế tạo cắt gọt - lấy đi các vật liệu thừa từ phôi ban đầu cho đến khi thu được hình dạng mong muốn. Ngược lại, công nghệ in 3D bắt đầu với vật liệu rời và sau đó tạo ra một sản phẩm ở dạng 3D từ mẫu kỹ thuật số.

Có nhiều thuật ngữ khác cũng được dùng để chỉ công nghệ in 3D như công nghệ tạo mẫu nhanh, công nghệ chế tạo nhanh và công nghệ chế tạo trực tiếp. Như vậy, hầu hết các thuật ngữ này đều ra đời dựa trên cơ chế hay tính chất của công nghệ.

Ngày nay, in 3D có thể tạo ra đồ vật từ nhiều loại vật liệu, bao gồm nhựa, kim loại, gốm sứ, thủy tinh, giấy và thậm chí cả tế bào sống. Các vật liệu này có thể dưới dạng bột, dây tóc, chất lỏng hoặc tấm. Với một số kỹ thuật, một vật đơn giản có thể được in bằng nhiều vật liệu và màu sắc và một tác vụ in đơn lẻ thậm chí có thể tạo ra các bộ phận chuyển động kết nối (như bản lề, liên kết chuỗi hoặc lưới).

LỊCH SỬ CỦA CÔNG NGHỆ IN 3D

Thiết bị và vật liệu sản xuất đắp dần đã được phát triển trong những năm 1980. Năm 1981, Hideo Kodama của Viện Nghiên cứu Công nghiệp thành phố Nagoya (Nhật Bản) đã phát triển phương pháp tạo ra một mô hình bằng nhựa ba chiều với hình ảnh cứng polymer, nơi diện tích tiếp xúc với tia cực tím được kiểm soát bởi một mô hình lớp hay phát quang quét. Sau đó, vào năm 1984, nhà sáng chế người Mỹ Charles Hull của Công ty Hệ thống 3D (3Dsystems) đã phát triển một hệ thống nguyên mẫu dựa trên quá trình này được gọi là Stereolithography, trong đó, các lớp được bổ sung bằng cách chữa giấy nến với ánh sáng cực tím laser. Đóng góp của Hull là đã thiết kế ra các định dạng tập tin STL (STereoLithography) được ứng dụng rộng rãi trong các phần mềm in 3D.

Năm 1986, Charles Hull sáng tạo ra quy trình Stereolithography - sản xuất vật thể từ nhựa lỏng và làm cứng lại bằng laser. Sau đó ông đăng ký bản quyền cho công nghệ in 3D “Thiêu kết lazer chọn lọc” (Selective laser sintering - SLS) sử dụng file định dạng STL. Hull cũng thành lập công ty 3Dsystems và đến nay đây là một trong những công ty cung cấp công nghệ lớn nhất hiện nay trong lĩnh vực in 3D.

Ưu điểm và hạn chế của in 3D

In 3D có nhiều ưu điểm so với các phương pháp thông thường. Với in 3D, một ý tưởng có thể chuyển trực tiếp từ một tệp tin trên máy tính của nhà thiết kế tới một bộ phận hoàn chỉnh hoặc sản phẩm, có thể bỏ qua nhiều bước sản xuất truyền thống (bao gồm mua sắm từng bộ phận, tạo ra các bộ phận bằng cách sử dụng khuôn mẫu, gia công để khắc các bộ phận từ khối vật liệu, hàn phần kim loại với nhau và lắp ráp).

In 3D cũng có thể làm giảm lượng vật liệu bị lãng phí trong sản xuất và tạo ra các vật thể khó hoặc vật thể không thể sản xuất với các kỹ thuật truyền thống, bao gồm các vật có cấu trúc bên trong phức tạp làm tăng sức mạnh, giảm trọng lượng, hoặc tăng chức năng.

Ưu điểm của công nghệ in 3D còn ở chỗ tạo mẫu nhanh. Công nghệ này có sự vượt trội về thời gian chế tạo một sản phẩm hoàn thiện. Ngoài ra, công nghệ in 3D còn có thể chế tạo ra đối tượng với đầy đủ các bộ phận cả bên trong lẫn bên ngoài một cách chi tiết chỉ trong một lần thực hiện mà các phương pháp truyền thống không thể chế tạo được.

Các hạn chế hiện tại của in 3D khác nhau tùy theo kỹ thuật in, bao gồm tốc độ in hiện tại chưa thực sự tương xứng với tiềm năng, kích thước đối tượng được in hạn chế, chi tiết hoặc độ phân giải của đối tượng còn giới hạn, chi phí vật liệu còn cao, và trong một số trường hợp, độ bền chắc của sản phẩm được in cũng hạn chế. Tuy nhiên, trong những năm gần đây đã có những tiến bộ nhanh chóng trong việc giảm các hạn chế này.

Công nghệ in 3D

Nguyên lý chung của công nghệ in 3D

Để bắt đầu in 3D, người ta cần một bản thiết kế vật thể 3D trên phần mềm máy tính CAD. Mô hình của vật thể hoặc được thiết kế trực tiếp trên phần mềm này hoặc được đưa vào phần mềm thông qua việc sử dụng thiết bị quét laser. Sau khi bản thiết kế được hoàn thành, chúng ta cần tạo ra tài liệu STL. Làm tesselate theo ngôn ngữ Tesselation chuẩn là chia một vật thể thành những đa giác nhỏ hơn, để mô phỏng cho cấu trúc bên ngoài và cả bên trong của vật thể. Đây là phần rất quan trọng trong sản xuất đắp dần. Khi STL đã được hoàn thiện, hệ thống sẽ chia nhỏ thiết kế mẫu thành nhiều lớp khác nhau và chuyển thông tin đến thiết bị sản xuất đắp dần. Sau đó, hệ thống sản xuất đắp dần sẽ tự chế tạo vật thể theo từng lớp một cho đến khi vật thể cần sản xuất được hoàn thiện.

Để sản xuất các vật thể, các hệ thống máy in 3D sử dụng kết hợp nhiều công nghệ khác nhau. Các công nghệ này được phân loại dựa vào bản chất vật liệu. In 3D hay sản xuất đắp dần có thể làm việc với vật liệu rắn (nhựa, kim loại, polymer), vật liệu lỏng (nhựa lỏng đông cứng lại nhờ tác động của laser hay ánh sáng điện tử), hay vật liệu dạng bột (bột kim loại, bột gốm kết dính với nhau tạo thành sản phẩm…).

Sau quá trình này thường có thêm một vài khâu hoàn thiện sau sản xuất. Có thể là loại bỏ bụi bẩn hoặc các chất liệu khác bám trên sản phẩm. Ngoài ra, đôi khi chúng ta cần thêm quá trình thêu kết để có thể phủ kín các lỗ hổng trên sản phẩm. Hoặc sử dụng một vài quá trình thẩm thấu để phủ kín sản phẩm bằng các vật liệu khác.

Các công nghệ sử dụng trong sản xuất đắp dần có thể mở ra nhiều cách kết hợp các loại vật liệu, phương pháp nung chảy và kết dính khác nhau. Mỗi công nghệ đều có những ưu - nhược điểm và hiệu quả nhất định theo từng mục đích cụ thể.

Công nghệ “Tạo hình nhờ tia laser” (stereolithography - SLA)

Được Chuck Hull phát triển, đây là công nghệ in 3D xuất hiện đầu tiên và cũng là công nghệ in 3D chi tiết chuẩn xác nhất, có sai số thấp nhất trong các công nghệ in 3D khác. Hiện 3D Systems là hãng nắm bản quyền thương mại công nghệ in 3D này. Công nghệ in 3D SLA có đặc điểm khác biệt với các công nghệ khác là dùng tia UV làm cứng từng lớp vật liệu in (chủ yếu là nhựa lỏng).

Máy in SLA

Công nghệ này được sử dụng để chế tạo ra các vật phẩm 3D chỉ từ những hình ảnh trên máy tính và công nghệ này cho phép người dùng kiểm tra các mẫu thiết kế một cách nhanh chóng, chính xác trước khi quyết định đầu tư sản xuất hàng loạt.

Ưu điểm: Công nghệ SLA có khả năng tạo ra các mô hình có độ chi tiết cao, sắc nét và chính xác. Đây là công nghệ tạo ra sản phẩm in 3D là nhựa tốt nhất, có thể sử dụng ngay, độ phân giải, độ mịn cao, có thể nói là cao nhất hiện nay.

Nhược điểm: Vật liệu in 3D khá đắt, sản phẩm in 3D bị giảm độ bền khi để lâu dưới ánh sáng mặt trời.

SLA được sử dụng rộng rãi cho việc tạo mẫu nhanh và để tạo ra các hình dạng phức tạp với chất lượng cao, chẳng hạn như đồ trang sức. Công nghệ SLA cũng đang được sử dụng nhiều trong các nhà máy sản xuất giày dép cho các hãng lớn như Nike, Adidas,…để thực hiện công đoạn in 3D khuôn giày và tạo mẫu đế giày nhanh.

Sản phẩm được tạo ra từ công nghệ SLA

Công nghệ “Thiêu kết lazer chọn lọc” (Selective laser sintering - SLS)

Công nghệ này do Carl Deckard phát triển vào năm 1986 tại Đại học Texas và được cấp bằng sáng chế năm 1989. Thiết bị đầu tiên được thương mại hoá vào năm 1992. Công nghệ này này cũng dựa trên quá trình chế tạo đắp dần nhưng chất polymer lỏng được thay bằng vật liệu ở dạng bột gốm sứ, thép, titan, nhôm, bạc, thủy tinh,… Tia laser giúp liên kết các hạt bột với nhau. Đặc biệt, bột thừa sau quy trình có thể tái chế nên rất tiết kiệm. Có thể tạo lớp bằng vật liệu phụ trợ là keo chuyên dụng hoặc tia laser, tia UV,….

Ưu điểm: Khả năng tạo mẫu bằng các loại vật liệu dạng bột khác nhau như nhựa, kim loại, thủy tinh, gốm. Tạo mẫu đa dạng về màu sắc, có thể tạo ra các mẫu hình dạng phức tạp, không cần sử dụng vật liệu hỗ trợ, không cần cấu trúc hỗ trợ.

Nhược điểm: Phức tạp, chi phí đầu tư cao, chi phí vận hành cao do hao tổn vật liệu lớn. Các mô hình kín và có phần rỗng bên trong vẫn phải tiêu tốn một lượng vật liệu khá lớn.

Công nghệ SLS thích hợp để in các mô hình có thành mỏng, các chi tiết cần độ dẻo. Đặc biệt, SLS là lựa chọn tuyệt vời khi cần in những mô hình lớn hoặc có phần rỗng phía dưới đáy. Xét về độ mịn bề mặt, công nghệ SLS cho chất lượng cao hơn công nghệ FDM, tuy nhiên rất khó để phân biệt độ mịn các lớp in bằng mắt thường.

Một số dạng sản phẩm của công nghệ SLS

Công nghệ “Mô hình hóa bằng phương pháp nóng chảy lắng đọng” (Fused deposition modeling - FDM)

Máy in FDM

Được S. Scott Crump phát triển vào cuối những năm 1980. Hãng Stratasys bán chiếc máy sử dụng công nghệ FDM đầu tiên có tên “3D Modeler” vào năm 1992. Máy in 3D dùng công nghệ FDM xây dựng mẫu bằng cách đùn nhựa nóng chảy rồi hoá rắn từng lớp tạo nên cấu trúc chi tiết dạng khối.

Công nghệ FDM của Stratasys đến nay đã trở thành một công nghệ ở tầm cỡ công nghiệp. Công nghệ này có hiệu suất cao và sử dụng kỹ thuật in nhiệt dẻo rất có giá trị đối với kĩ sư cơ khí và các nhà sản xuất, nhờ thế mà thành phẩm có phẩm chất tốt về mặt cơ học, nhiệt và hóa học.

Ưu điểm: Là công nghệ in 3D giá rẻ, dễ sửa chữa và thay thế chi tiết máy móc, in với số lượng lớn, ít tốn nguyên liệu. Tốc độ tạo hình 3D nhanh, đơn giản, độ tin cậy cao, dễ bảo dưỡng. Công nghệ tạo mẫu nhanh FDM sử dụng vật liệu nhựa nhiệt dẻo không độc, không mùi, và do đó sẽ không gây ô nhiễm môi trường xung quanh. Thiết bị hoạt động tạo ra ít tiếng ồn.

Nhược điểm: Ít khi dùng trong lắp ghép vì độ chính xác không cao. Khả năng chịu lực không đồng nhất.

Sản phẩm của công nghệ FDM

Công nghệ in 3D dán nhiều lớp (Laminated Object Manufacturing - LOM)

Công nghệ LOM được Michael Feygin phát triển vào năm 1985 và được công ty California Helisys (Hoa Kỳ) tung ra thị trường năm 1986. Đây là kiểu in 3D sử dụng những vật liệu dễ dàng dát mỏng như giấy, gỗ, nhựa…Kiểu in này cho ra màu sắc chuẩn xác với bản mẫu thiết kế nhất. Trong quá trình in LOM các lớp giấy, nhựa hoặc kim loại cán mỏng dính bọc được hợp nhất bằng cách sử dụng nhiệt và áp lực, sau đó cắt thành hình với máy tính điều khiển tia laser và dao cắt. Sau khi thực hiện quá trình in, bước cuối cùng là gia công và khoan.

Công nghệ này cung cấp các dịch vụ in ấn bao gồm in các bộ phận như điện thoại, bút, đồ trang sức và nhiều vật hữu ích khác hoặc những đồ khách hàng thiết kế riêng.

Ưu điểm của công nghệ LOM: Vật liệu đa dạng, rẻ tiền (có thể sử dụng giấy, chất dẻo, kim loại, composites và gốm); Độ chính xác cao đạt được tốt hơn 0,25 mm. Bằng việc cắt vật liệu thay vì hóa rắn nó, hệ thống có thể bảo vệ được những đặc tính ban đầu của vật liệu; Không cần thiết kết cấu hỗ trợ; Tốc độ cao, nhanh hơn các phương pháp tạo lớp khác bởi vì tia laser không cắt toàn bộ diện tích mà chỉ quét theo chu vi bên ngoài. Do đó, vật liệu dày và mỏng có tốc độ cắt bằng nhau; Không có sự thay đổi pha trong quá trình chế tạo chi tiết nên tránh được độ co rút của vật liệu; Không độc hại và ô nhiễm môi trường.

Nhược điểm: Không thu hồi được vật liệu dư. Sự cong vênh của chi tiết thường là vấn đề chính của phương pháp LOM; Lấy sản phẩm ra khỏi kết cấu hỗ trợ khó khăn; Độ bóng bề mặt không cao.
 

Hình dáng máy in 3D công nghệ LOM và một số sản phẩm

Công nghệ “Laser kim loại thiêu kết trực tiếp” (Direct metal laser sintering - DMLS)

Năm 1994, hai hãng Rapid Product Innovations (RPI) và EOS GmbH đã phát triển Công nghệ “Laser kim loại thiêu kết trực tiếp” (Direct metal laser sintering - DMLS). Đây là một phương pháp tạo mẫu nhanh trong nhóm chế tạo đắp dần, có thể sử dụng vật liệu bột kim loại và mở ra một hướng mới, hiệu quả hơn cho việc chế tạo những hệ thống phức tạp.

Công nghệ DMLS là một trong những công nghệ đầu tiên sản xuất nhiều bộ phận kim loại trong một quy trình. Với DMLS, kim loại bột (đường kính khoảng 20 micron), không chứa chất kết dính hoặc chất dẫn xuất, bị tan chảy hoàn toàn khi quét chùm tia laser công suất cao để chuyển thành một dạng vật liệu mới với các tính chất của vật liệu ban đầu. Lợi thế của công nghệ DMLS so với công nghệ SLS là độ phân giải cao hơn do sử dụng các lớp mỏng hơn, được tạo nên bởi các hạt có đường kính nhỏ hơn. Khả năng này cho phép tạo ra một phần hình dạng phức tạp hơn. Các lựa chọn vật liệu hiện đang được cung cấp bao gồm thép hợp kim, thép không rỉ, nhôm, đồng, cobalt-chrome, và titan. Tuy nhiên, hầu như bất cứ kim loại hợp kim nào cũng có thể được sử dụng trong công nghệ này.

Sản phẩm của máy in DMSL

Ưu điểm của công nghệ DMLS so với những công nghệ tạo mẫu nhanh khác là có thể tạo ra những sản phẩm bằng kim loại với mật độ đạt trên 95% (công nghệ SLS chỉ đạt 70%) với độ chính xác và chi tiết cao do mỗi lớp tạo hình chỉ dày 20 µm.

Công nghệ DMLS được sử dụng để sản xuất các bộ phận trực tiếp cho một loạt các ngành công nghiệp bao gồm cả hàng không vũ trụ, nha khoa, y tế và các ngành công nghiệp khác với có kích thước vật in nhỏ đến trung bình. Công nghệ này có thể tạo ra các bộ phận phức tạp để làm bộ phận cấy ghép. Ngoài ra, công nghệ này còn có thể tạo ra các bộ phận của tàu không gian vũ trụ đòi hỏi tiêu chuẩn chịu nhiệt cao. DMLS là một công nghệ rất hiệu quả về mặt chi phí và thời gian.

Công nghệ in phun sinh học (Inkjet-bioprinting)

Công nghệ in phun sinh học sử dụng một kỹ thuật tương tự như các máy in phun, trong đó một vòi phun định vị chính xác đặt một chấm nhỏ mực in để tạo thành hình dạng. Trong in phun sinh học, vật liệu được sử dụng là các tế bào của con người chứ không phải là mực. Đối tượng in được tạo ra bằng cách phun một hỗn hợp “vật liệu giàn giáo” (như hydrogel có chứa đường) và các tế bào sống được nuôi cấy từ các mô của bệnh nhân. Sau khi in, mô được đặt trong một buồng với nhiệt độ và điều kiện ôxy thích hợp để tạo điều kiện cho tế bào tăng trưởng. Khi các tế bào đã được kết hợp, “vật liệu giàn giáo” được lấy ra và mô đã sẵn sàng để được cấy ghép.

Công nghệ in phun sinh học giúp tái tạo 100% mô hình quả tim người

Ưu điểm của máy in sinh học 3D là mô hoặc cơ quan có thể được tạo ra theo từng lớp một để đạt được hình học giải phẫu chính xác. In sinh học 3D có thể thu được bằng in bằng laser hỗ trợ sinh học (LaBP) hoặc in phun (IBP).

Ứng dụng của in 3D

Công nghệ in 3D đang ngày càng phát triển, không chỉ giúp cho việc chế tạo khuôn mẫu được chính xác và dễ dàng hơn mà còn tìm được nhiều ứng dụng trong thực tế cuộc sống. Công nghệ in 3D đang được ứng dụng nhiều trong các lĩnh vực công nghiệp sản xuất chế tạo, y khoa, kiến trúc, xây dựng… Dưới đây là những lĩnh vực chính được ứng dụng công nghệ in 3D.

Công nghiệp sản xuất/chế tạo

Các ngành công nghiệp sản xuất/chế tạo đã trở thành đối tượng sử dụng in 3D nhiều nhất. Lý do chính khiến công nghệ sản xuất đắp dần được sử dụng rộng rãi trong môi trường công nghiệp là do nó cho phép sản xuất các bộ phận với số lượng ít, bộ phận có hình dạng phức tạp, cắt giảm phế liệu, tạo nhanh sản phẩm thử nghiệm, sản xuất theo yêu cầu. Lý do nữa để sử dụng in 3D là giúp giảm độ phức tạp trong quản lý chuỗi cung ứng, cho phép sản xuất các bộ phận tại chỗ thay vì phải sản xuất ở nơi khác mang đến. Vì vậy, in 3D mở ra tiềm năng về lợi thế chi phí sản xuất, cải tiến quy trình và cả sản phẩm cho các nhà cung cấp trong một số trường hợp cụ thể.

Trong ngành công nghiệp ô tô: Ngoài mục đích thử nghiệm, thiết kế, tạo mẫu và sản xuất một số bộ phận, công cụ lắp ráp đặc biệt, ngành công nghiệp ô tô đã sử dụng công nghệ in 3D để sản xuất ra những chiếc xe hoàn chỉnh.

Chiếc xe ô tô Urbee đã được sản xuất toàn bộ bằng công nghệ in 3D

Trong ngành công nghiệp điện tử: Máy in 3D đã được sử dụng để chế tạo các bộ phận phức tạp đặc biệt từ các chất liệu khác nhau và đã mở ra một trào lưu mới của ngành công nghiệp này. Rõ ràng, khi áp dụng công nghệ này thì những chi tiết phức tạp được in ra một cách nhanh chóng và chuẩn xác hơn rất nhiều.

Máy in 3D có thể in mạch điện tử

Trong lĩnh vực năng lượng: Hãng Siemen đã chế tạo và thử nghiệm thành công cánh quạt động cơ Turbine khí bằng công nghệ in 3D, mở đường cho các nhà sản xuất điện và các thiết bị nặng khác sử dụng công nghệ in 3D, không những để chế tạo các mô hình hoặc nguyên mẫu mà còn chế tạo những chi tiết thực tế trong sản phẩm của họ.

Siemens đã thử nghiệm cánh quạt tua bin khí lần đầu tiên được thực hiện hoàn toàn bằng một quy trình in 3D

Ngành hàng không vũ trụ và quốc phòng: Trong các lĩnh vực hàng không vũ trụ và quốc phòng cũng đã áp dụng công nghệ in 3D vào thực tiễn như sản xuất các bộ phận của máy bay, tàu vũ trụ, chế tạo súng … Đa phần in 3D đều được sử dụng để sản xuất các bộ phận phức tạp nhất.

Hàng không vũ trụ và quốc phòng cũng đã áp dụng công nghệ in 3D

Y tế và chăm sóc sức khỏe

Công nghệ in 3D rất hữu ích trong sản xuất các mô hình sinh học (các mô hình bộ phận con người như xương, răng, tai giả...), thiết kế và sản xuất các bộ phận cơ thể giúp cho phẫu thuật tái tạo và cấy ghép. Các dụng cụ y tế như máy trợ thính, khung đỡ, mặt nạ, răng giả... đều có thể sản xuất bằng công nghệ in 3D theo đúng như kích thước, hình dạng, đặc điểm của từng bệnh nhân. Một trong những ứng dụng thú vị nhất của in 3D là chế tạo mô và các cơ quan của con người, mà người ta hay gọi là In sinh học - Bioprinting.

Chuỗi cung ứng dược phẩm cũng được thực hiện tốt hơn với in 3D. Trong tương lai, các hiệu thuốc hoặc thậm chí cá nhân có thể tự in các loại thuốc riêng cho mình từ các hợp chất thuốc bằng cách sử dụng máy in 3D. Hệ thống yêu cầu tuỳ biến cho phép kiểm soát và phân phối thuốc chính xác.

Về những ứng dụng của sản phẩm in 3D trong lĩnh vực ngoại khoa, các sản phẩm in 3D có thể được sử dụng để cấy trực tiếp vào trong cơ thể người. Ví dụ, do hình dạng của khớp gối rất phức tạp, khi gắn khớp nhân tạo thì chỉ cần điều chỉnh rất nhỏ về góc độ cũng có thể giúp giảm đáng kể áp lực lên đầu gối bệnh nhân. In 3D cũng bắt đầu được sử dụng để sản xuất hộp sọ nhân tạo.

Trong y học công nghệ in 3D có những đóng góp to lớn như sản xuất ra các bộ phận: tai, mũi, xương, răng, chân, tay … bằng những chất liệu chuẩn xác nhất có thể mô phỏng và thay thế các bộ phận của con người.

Kiến trúc và xây dựng

Ngành xây dựng đã sẵn sàng để đón nhận một làn sóng kỹ thuật mới gọi là công nghệ In 3D vào việc thi công các công trình dân dụng từ cầu cống đến các loại kiến trúc. Dù mới chỉ ở giai đoạn đầu nhưng đã có rất nhiều nỗ lực được thực hiện thành công trong việc xây dựng các toà nhà bằng các máy in 3D khổng lồ. Vật liệu phổ biến nhất cho in xây dựng là nhựa và bê tông. Phương pháp in 3D trong xây dựng có thể mang lại những cải tiến đáng kể về chất lượng, tốc độ, chi phí, đặc biệt là trong chi phí lao động, cải thiện tính linh hoạt, đảm bảo an toàn xây dựng và giảm các tác động môi trường.

Căn biệt thự được “in” bằng công nghệ in 3D của công ty HuaShang Tengda, Trung Quốc

Giáo dục

In 3D cũng có những ứng dụng thiết thực trong giáo dục, đặc biệt liên quan đến các môn học khoa học, công nghệ, kỹ thuật và kỹ năng toán học. Sinh viên có thể thiết kế và sản xuất các sản phẩm trong lớp học và có cơ hội thử nghiệm các ý tưởng, vừa học vừa làm với máy in 3D. Cách làm này làm tăng hứng khởi học tập, làm việc theo nhóm, tương tác trong lớp học cũng như hỗ trợ khả năng sáng tạo, kỹ năng máy tính, và khả năng tư duy ba chiều của sinh viên.

Sản xuất thực phẩm

Những chiếc máy in 3D ngày nay không những có thể tạo ra các sản phẩm đẹp làm vừa mắt người tiêu dùng mà còn ngày càng được sử dụng rộng rãi trong lĩnh vực ẩm thực. Máy in thực phẩm 3D nhả ra vật chất ăn được dạng lỏng thông qua các vòi phun theo từng lớp dựa trên chương trình được lập trình sẵn trên máy tính. Máy in thực phẩm 3D có thể tạo ra sô-cô-la, bánh, kẹo, mỳ, bánh pizza và các loại đồ ăn nhanh thơm ngon khác.

Thức ăn được làm từ máy in 3D

Trong gia đình

Với chi phí thấp và sự tiện dụng, máy in 3D sẽ dần trở thành một thiết bị trong gia đình. Máy in 3D để bàn cho phép sản xuất bất cứ thứ gì ngay trong căn nhà riêng của mình, tất nhiên là với kích thước phù hợp với máy in và các nguyên liệu có thể có. Các vật dụng yêu thích như đồ chơi, đồ dùng và đồ vật trang trí là những ứng dụng phổ biến nhất. Nhờ máy in 3D để bàn, mỗi người có thể tự thiết kế và sản xuất vật dụng theo yêu cầu riêng biệt, làm nên cá tính của bản thân. Công nghệ này cũng góp phần làm tăng khả năng và cơ hội sáng tạo của mỗi người. Và hơn thế, in 3D tại gia đình làm giảm bớt các khó khăn trong chuỗi cung ứng truyền thống.

Những chi tiết trong các đồ vật cũ hoặc hỏng có thể được thay thế dễ dàng nhờ in 3D


 

Tài liệu tham khảo chính

1. Công nghệ in 3D – Lịch sử và ứng dụng, tác động và thách thức, vai trò quản lý

và chiến lược phát triển, Tạp chí Tia Sáng, 6/2015;

2. Công nghệ in 3D với giáo dục và đào tạo, Tạp chí Tia Sáng, 7/2015;

3. Can 3D Printing Reshape Manufacturing In America? Forbes.com, 17/6/2014.

4. Disruptive technologies: Advances that will transform life, business, and the

global economy, McKinsey Globle Institute Analysis, 5/2013.

5. Exploring the 3D printing opportunity, The Financial Times, 8/2012.

6. The rise of additive manufacturing, Excell, Jon, The engineer, 10/2013.

7. The next step: 3D printing the human body. Williams, Rhiannon, The Daily

Telegraph, 2/2014.

8. “The Next Big Thing in 3-D Printing: Big Area Additive Manufacturing, or

BAAM”. McKenna, Beth. The Motley Fool. 9/2014.

9. https://vi.wikipedia.org/wiki/In_3D

10.http://scantechvn.com

11.Wohler Report 2014, 2015, Wohlers Associates.

12.What is 3D printing? https://3dprinting.com/what-is-3d-printing/

13.3D Printer Technology – Animation of layering, Create It Real, 1/2012.

14.3D Printing: Challenges and Opportunities for International Relations,

Transcript. Council on Foreign Relations, 10/2013.

15. 3D Printing Technology Insight Report, 2014.